https://investasi.pasamankab.go.id/https://investasi.pasamankab.go.id/bo/https://investasi.pasamankab.go.id/ran/https://www.tiendacapilar.com/https://www.carreirosdomonte.com/https://doglongevity.vet/https://rapamycinforcats.com/https://www.restaurantecentralgrill.com/https://investasi.pasamankab.go.id/sg/https://investasi.pasamankab.go.id/static/
Perpustakaan Universitas Esa Unggul
  • Ada pertanyaan ? 021-5674223, ext 282
  • library@esaunggul.ac.id
  • Sen - Jum 09:00 - 17:00
Login
Logo Logo
  • Beranda
  • Profil
    • Sejarah
    • Struktur Organisasi
    • Visi Misi
    • Tata Tertib
    • Akreditasi
    • Nomor Pokok Perpustakaan
  • Koleksi
    • Database
      • Perpustakaan
      • Repository
      • Hukum Online
      • Scopus
      • Taylor Francis
      • McGrawHill Pharmacy
      • McGrawHill Medicine
      E-Jurnal Internasional
      • Konsorsium E-Journal FPPTI (EKONOMI)
      • Konsorsium E-Journal FPPTI (TEKNIK)
      • Konsorsium E-Journal FPPTI (SOSIAL)
      • Konsorsium E-Journal FPPTI (KESEHATAN)
      • Proquest
      Sarana Informasi
      • SIAkad
      • MBKM
      • Online Learning
      • Seminar Web
      • Green Campus
      • Blog Mahasiswa
      • Blog Dosen
      • Orang Tua
  • Pelayanan
    • Sirkulasi
    • Referensi
    • Multimedia
    • Formulir Bebas Pinjam Pustaka
    • Formulir Online Unggah Tugas Akhir
    • Formulir Online Sumbangan Buku
    • Direktori Umum
    • Layanan Turnitin
    • Layanan Asistensi Referensi
  • Kegiatan
    • Agenda
    • Galeri
    • Survey Perpustakaan
    • Berita
  • Sarana Prasarana
    • Ruang Diskusi
    • BI Corner Space
    • Area Unduh
  • Hubungi Kami
    • Kontak
    • Whatsapp
    • Lokasi
    • Email

Deep learning in time series analysis

  • Beranda
  • Buku
  • Deep learning in time series analysis
Thumb

Deep learning in time series analysis

Arash Gharehbaghi

Deep learning is an important element of artificial intelligence, especially in applications such as image classification in which various architectures of neural network, e.g., convolutional neural networks, have yielded reliable results. This book introduces deep learning for time series analysis, particularly for cyclic time series. It elaborates on the methods employed for time series analysis at the deep level of their architectures. Cyclic time series usually have special traits that can be employed for better classification performance. These are addressed in the book. Processing cyclic time series is also covered herein. An important factor in classifying stochastic time series is the structural risk associated with the architecture of classification methods. The book addresses and formulates structural risk, and the learning capacity defined for a classification method. These formulations and the mathematical derivations will help the researchers in understanding the methods and even express their methodologies in an objective mathematical way. The book has been designed as a self-learning textbook for the readers with different backgrounds and understanding levels of machine learning, including students, engineers, researchers, and scientists of this domain. The numerous informative illustrations presented by the book will lead the readers to a deep level of understanding about the deep learning methods for time series analysis.

  • No. Panggil 006.3 GHA d
  • Edisi
  • Pengarang Arash Gharehbaghi
  • Penerbit Boca Raton, CRC Press 2023

Kerjasama Perpustakaan

  • Perpustakaan Nasional Republik Indonesia
  • FPPTI DKI Jakarta
  • Perpustakaan Institut Sains dan Teknologi Al-Kamal
  • Perpustakaan Akademi Fisioterapi Rumah Sakit Dustira Cimahi
  • Perpustakaan STIKES Abdi Nusantara Jakarta
  • Perpustakaan Universitas Ibn Khaldun Bogor
  • Perpustakaan STIKES Cirebon
  • Perpustakaan APIKES Bhumi Husada Jakarta
  • Perpustakaan Fakultas Ekonomi Universitas Tarumanegara

Link Jurnal

  • Journal Civitas Academica
  • Jurnal Ekonomi
  • Jurnal Fisioterapi
  • Jurnal Bioteknologi
  • Jurnal Hukum
  • Jurnal Keperawatan
  • Jurnal Ilmu Pendidikan
  • Jurnal Psikologi
  • Jurnal Kesehatan Masyarakat
  • Jurnal Ilmu Gizi
  • Jurnal Ilmu Komunikasi

 

  • Jurnal Ilmu Komputer
  • Jurnal Manajemen Administrasi Rumah Sakit
  • Jurnal Farmasi
  • Jurnal Administrasi Publik
  • Jurnal Desain Industri
  • Jurnal Rekam Medis
  • Jurnal Akuntansi Dan Manajemen
  • Jurnal Planologi
  • Jurnal Teknik Industri
  • Jurnal Abdimas
  • Forum Ilmiah

Alamat

  • Email library@esaunggul.ac.id

  • Lokasi Gedung C Lantai 1 Universitas Esa Unggul, Jl. Arjuna Utara No.9, Duri Kepa, Kebon Jeruk, Kota Jakarta Barat, Daerah Khusus Ibukota Jakarta 11510

Jam Operasional
  • Senin - Jumat :
    09:00 - 17:00

© Copyright 2022. All Rights Reserved by Universitas Esa Unggul

Perhatian

Mohon maaf, saat ini website sedang dalam maintenance sehingga katalog tidak akan tampil.

Silahkan akses https://elib.esaunggul.ac.id untuk mengakses katalog perpustakaan

Klik disini